Name: _____

Circle True or False. (1 point for correct answer, 0 for incorrect answer)

1.	True	False	Changing the initial conditions for a linear homogeneous recurrence re- lation does not affect the bases of the exponential functions that appear the direct formula for the relation.
2.	True	False	Checking that a function $y(t)$ is a solution to a DE may not be possible since we may not know how to solve the DE.
3.	True	False	There are IVP's in which the function $f(t, y)$ is continuous everywhere, but the solutions to the IVP cannot extend beyond a certain interval [0, T).
4.	True	False	All I.V.P.'s for second order, linear, homogeneous ODE's with constant coefficients are solvable and have a unique solution.
5.	True	False	The DE $y' = 3y^2$ will have a slope field with same slopes lined up in vertical lines because the equation is autonomous.
6.	True	False	The dot product of vectors always yields a non-negative result, but it is the norm of a vector that gives its length.
7.	True	False	Two vectors (of same dimensions) are perpendicular if and only if their dot product is 1.
8.	True	False	There are non-square matrices A and B for which it is possible to multiply them in either order but then AB cannot equal BA .
9.	True	False	As soon as we see a row like $(0000 0)$ during Gaussian elimination, we know that the system will have infinitely many solutions.
10.	True	False	If an eigenvector \vec{v} for a matrix A corresponds to eigenvalue $\lambda = 2018$, then $A^{2019}(\vec{v}) = 2019^{2018}$
11.	True	False	The least-square best-fitting line for any number of data points always exists and is unique essentially because there is a (unique) shortest dis- tance from a point to a plane in any dimensions.
12.	True	False	If we use more data points to find the best-fiting line, we may increase the overall error S yet still be able to make better predictions about the data.